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a b s t r a c t 

The graph based Semi-supervised Subspace Learning (SSL) methods treat both labeled and unlabeled data 

as nodes in a graph, and then instantiate edges among these nodes by weighting the affinity between the 

corresponding pairs of samples. Constructing a good graph to discover the intrinsic structures of the data 

is critical for these SSL tasks such as subspace clustering and classification. The Low Rank Representation 

(LRR) is one of powerful subspace clustering methods, based on which a weighted affinity graph can be 

constructed. Generally, adjacent samples usually belong to a union of subspace and thereby nearby points 

in the graph should have large edge weights. Motivated by this, in this paper, we proposed a novel LRR 

with Adaptive Distance Penalty (LRRADP) to construct a good affinity graph. The graph identified by the 

LRRADP can not only capture the global subspace structure of the whole data but also effectively preserve 

the neighbor relationship among samples. Furthermore, by projecting the data set into an appropriate 

subspace, the LRRADP can be further improved to construct a more discriminative affinity graph. Exten- 

sive experiments on different types of baseline datasets are carried out to demonstrate the effectiveness 

of the proposed methods. The improved method, named as LRRADP 2 , shows impressive performance on 

real world handwritten and noisy data. The MATLAB codes of the proposed methods will be available at 

http://www.yongxu.org/lunwen.html . 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In many big data related applications, the problem of effectively

connecting unlabeled data with labeled data is of central impor-

tance [1,2] . For example, in the applications of image based web

searching and image based object recognition, the labeled data is

usually limited and the unlabeled data are rich and available in

internet. In these problems, the target goal is to build the connec-

tion between unlabeled data and labeled data and then identify

the labels of the unlabeled data. Semi-supervised Subspace Learn-

ing (SSL) [3–6] is a family of techniques that exploits the “manifold

structure” of the data by using both labeled and unlabeled samples

[7,8] . 

Constructing a graph of the local connectivity of data is an ef-

fective strategy for SSL due to its success in practice [9–11] . The

graph based SSL methods treat both labeled and unlabeled sam-

ples from the data set as nodes in a graph, and then instantiate

edges among these nodes which are weighted according to the
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ffinity between the corresponding pairs of samples. Suppose that

he data set is noiseless and embeds in independent subspaces, the

raph identified by the respective SSL method should be a block-

iagonal matrix and each block corresponding to a subspace. Sub-

pace clustering is able to produce exactly correct clustering re-

ult based on the block-diagonal matrix. To address this issue, we

uild a weight graph G = (V, W ) , where V is the vertex set de-

oting nodes of the graph corresponding to N data points and W

 R N × N is a symmetric non-negative weight matrix representing

he relationship among the nodes. A non-zero weight reflects the

ffinity between corresponding nodes and a zero weight denotes

hat there is no edge jointing them. An ideal similarity matrix W ,

ence an ideal weight graph G , is one in which nodes that cor-

espond to points from the same subspace are connected to each

ther and there is no edge between any two nodes that correspond

o points belonging to different subspaces. Thus, given a data set,

he problem of graph construction is to determine the weight ma-

rix W . A perfect similarity graph built by SSL has n indepen-

ent connected components corresponding to n subspaces and

hen by applying spectral clustering the labels can be propagated

rom the labeled samples to unlabeled samples over the graph

12–15] . 

http://dx.doi.org/10.1016/j.patcog.2017.02.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.02.017&domain=pdf
http://www.yongxu.org/lunwen.html
mailto:yongxu@ymail.com
http://dx.doi.org/10.1016/j.patcog.2017.02.017
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The recently Low Rank Representation (LRR) [13,14] is a promis-

ng weight graph construction method. The target of the LRR aims

t finding the lowest-rankness representation among all candidates

hat can express the data vectors as linear combinations of the ba-

is in a proper dictionary. Consider a set of data X = [ x 1 , x 2 , . . . , x n ]

n R d , each column of which is a sample that can be represented

y the linear combination of a basis of d vectors. If we form the

asis matrix as A = [ a 1 , a 2 , . . . , a m 

] , the X can be represented as: 

 = AZ, (1) 

here Z = [ z 1 , z 2 , . . . , z n ] is the coefficient matrix with each z i char-

cterizing how other samples contribute to the representation of x i .

ince the data can only be essentially represented by those data in

he same subspace, the nonzero elements in z i represents that the

orresponding samples are in the same subspace. Therefore, min-

mizing rankness of the data vector space could be an appropri-

te criterion to cluster data drawn from multiple linear subspaces.

hat is, LRR discovers the lowest rankness of the representation of

he data set as follows. 

in 

Z 
rank (Z) , s.t. X = AZ, (2)

here rank ( •) denotes the rankness of a matrix. The low rank-

ess constraint guarantees that the coefficients of samples coming

rom the same subspace are highly correlated. When the data are

lean and exactly from linearly independent subspaces, the similar-

ty matrix built by this way is an ideally n block diagonal matrix

orresponding to n subspaces. 

LRR is an effective framework for exploring the multiple sub-

pace structures of data. Based on the LRR, lots of recent effort s

ave been made to exploit ways of constructing a discriminative

raph for SSL [16–19] . Liu et al. [18] proposed a latent low rank

epresentation method for subspace clustering by approximating

nd using the unobserved data hidden in the observed data to re-

olve the issue of insufficient sampling. Zhang et al. [19] extended

he latent LRR by choosing the sparest solution in the solution

et to increase the robustness of the method. Wei et al. [20] pro-

osed a robust shape interaction by preprocessing the data us-

ng robust PCA [21] and then applying LRR to build the similar-

ty matrix. By combining the sparsity and global structure, Zhuang

t al. [22,23] proposed a nonnegative low-rank and sparse graph

or semi-supervised learning. Fang et al. [24,25] combined the non-

egative low-rank representation with the semi-supervised cluster-

ng learning within one framework achieving acceptable classifica-

ion performance. 

Conventional LRR based methods usually consider much on

onstruction of the global subspace structure. However, a good

raph should not only capture global structures of all the data but

lso reveal the intrinsic neighbor relationship among the data [26] .

n this paper, we propose a Low Rank Representation with Adap-

ive Distance Penalty (LRRADP) method, which constructs the lin-

ar combination by using the nearby samples as much as possible

ia the adaptive distance penalty. The affinity graph built by the

RRADP can better both capture the global subspace structure of

 whole data set and preserve local neighbor relationships among

he data samples. The similarity graph/matrix identified by the LR-

ADP can work well with conventional semi-supervised classifi-

ation method, such as Gaussian Fields and Harmonic Functions

GFHF) [8] , for the label prediction of unlabeled samples. More-

ver, the LRRADP is improved to LRRADP 2 by projecting the data

et into an appropriate subspace. 

The remainder of this paper is organized as follows.

ection 2 introduces the related works of the low rank repre-

entation and semi-supervised subspace classification methods.

ection 3 proposes an LRR with adaptive distance penalty method

LRRADP) for subspace classification. Section 4 extends the LRRADP

o LRRADP 2 by projecting the data into an appropriate subspace.
ection 5 presents the experimental results and Section 6 con-

ludes this paper. 

. Related works 

.1. Low rank representation 

To capture the global structure of data, LRR [13,14] is to con-

truct the affinities of an undirected graph. A LRR graph obtains

he representation of all data under a global low-rank constraint,

hus is better at capturing the global data structures. It has been

roven that under suitable conditions, LRR can correctly preserve

he membership of samples that belong to the same subspace [13] .

iven a set of data, the data usually can be represented by other

ata that lie in the same subspace. When the subspace are inde-

endent and the data is noiseless. The subspace can be exactly di-

ided and the representation of the data set presents block diag-

nal. The LRR demonstrated that minimizing rank representation

f the data set can be replaced by minimizing the nuclear norm

f the union data, resulting in the following low rank optimization

roblem: 

in 

Z 
|| Z| | ∗, s.t. X = AZ, (3)

here || •|| ∗ denotes the nuclear norm of a matrix which equals

o the sum of the singular values of the matrix. A is a basis ma-

rix that is used as the dictionary of the linear representation. By

hoosing an appropriate dictionary A , the underlying row space

f the data set X can be correctly captured. In most conditions,

he data matrix itself X is directly used as the dictionary [13] . We

all the optimal solution of the problem (3) as the “lowest rank

epresentation” of data X . In real-world applications, the observa-

ion data are often corrupted by noise. By correcting the noise, the

odel of LRR can be converted to as follows. 

in 

Z 
|| Z| | ∗ + λ|| E| | l , s.t. X = X Z + E, (4)

here λ > 0 is a parameter. E is an error matrix representing the

oises and || •|| l denotes a special regularization strategy to charac-

erize the noise. There are many choices to define the error term.

or example, || E|| 2 
F 

is proposed for the small Gaussian noise, || E || 0 
an be used to character random corruptions, and || E || 2, 1 generally

haracter “sample-specific corruption” by encouraging the columns 

n E to be zero. 

Based on the basic low rank representation, a lot of effort s have

een devoted to improve the LRR by imposing the penalty on Z

nd E and different kinds of LRR based methods were proposed.

o better handle the LRR based method, a more general rank min-

mization problem is given as follows. 

in 

Z 
|| Z| | ∗ + Q(Z, E) , s.t. X = X Z + E, (5)

here Q is a penalty function on Z and E . For example, Zhuang

t al. [22] defined the Q(Z, E) = λ1 || Z| | 1 + λ2 || E| | 2 , 1 , where λ1 

nd λ2 are non-negative parameters, to construct a low-rank and

parse graph. Feng et al. [27] aim at producing a exactly block-

iagonal similarity matrix by restricting the rank of Laplacian ma-

rix by defining Q(Z, E ) = 

λ
2 || E || 2 F 

. 

.2. Semi-supervised classification 

Based on the affinity graph/matrix obtained by respective sub-

pace clustering methods, semi-supervised classifier, such as Local

nd Global Consistency (LGC) [28] and GFHF [8] , can be used to

redict labels of unlabeled samples. To address this issue, we de-

ne a matrix F = [ F l F u ] 
T ∈ R n ×c to represent the label prediction

atrix by labeling a sample x i with a label y i = arg max 
j 

F i, j . Let
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 = [ Y l Y u ] 
T ∈ R n ×c be a labeled matrix, where Y l and Y u correspond

to the labeled and unlabeled samples, respectively. Y i, j = 1 if sam-

ple x i is associated with label j( j = 1 , 2 , . . . , c) and Y i, j = 0 other-

wise. Both LGC and GFHF utilize the weight graph and labeled ma-

trix to recover the continuous classification function by optimizing

both the label fitness and manifold smoothness. In other words, F

should satisfy the given labels Y l and meanwhile smooth on the

whole graph built based on both labeled and unlabeled samples.

That is, LGC and GFHF aim at minimizing the following optimiza-

tion cost on a weight graph to recover the classifiers F , respec-

tively. 

g LGC (F ) = 

1 

2 

n ∑ 

i, j=1 

|| F i ∗√ 

D ii 

− F j∗√ 

D j j 

|| 2 2 S i, j + λ
m ∑ 

i =1 

|| F i, ∗ − Y i, ∗| | 2 , 

g GF HF (F ) = 

1 

2 

n ∑ 

i, j=1 

|| F i ∗ − F j∗|| 2 2 S i, j + λ∞ 

m ∑ 

i =1 

|| F i, ∗ − Y i, ∗| | 2 , (6)

where λ balances the label fitness and manifold smoothness. λ∞ 

is a very large number so 
∑ n 

i =1 || F i − Y i | | 2 must be very small. F i , ∗
and Y i , ∗ are the i th row of F and Y , respectively. m is the number

of labeled samples. Both g LGC ( F ) and g GHF ( F ) have following similar

formulations: 

g LGC (F ) = tr( F T ˜ L F ) + tr (F − Y ) T U λ(F − Y ) , 
g GF HF (F ) = tr( F T LF ) + tr (F − Y ) T U ∞ 

(F − Y ) , 
(7)

where ˜ L and L are normalized Laplacian matrix and Laplacian ma-

trix of the similarity matrix S , respectively. U λ is a diagonal matrix

with the m elements as λ corresponding to labeled samples and

with the rest n − m diagonal elements as 0 corresponding to unla-

beled samples, respectively. U ∞ 

is also a diagonal matrix with the

m elements as λ∞ 

corresponding to labeled samples and with the

rest n − m diagonal elements as 0 corresponding to unlabeled sam-

ples, respectively. F can be directly solved by differentiating g LGC or

g GFHF with respect to F . 

3. Low rank representation with adaptive distance penalty 

Throughout this paper, all the matrices are written as upper-

case. For matrix M , the ( i, j )th element of M is denoted as [ M ] i, j .

The i th row of M is denoted as [ M ] i , ∗ and the j th column of M is

denoted as [ M ] ∗ , j . The trace of M is denoted as tr ( M ). The l p − norm

of M is denoted as || M || p . Specially, the Frobenius norm and nuclear

norm of matrix M are denoted as || M || F and || M || ∗ , respectively. The

transpose of M is denoted as M 

T . M ≥ 0 mean all elements of M

are larger than or equal to zero. I denotes an identity matrix. In

this section, we use X ∈ R d × n to represent the data set, where d

is the dimension of the data and n is the number of the data. 

3.1. LRRADP 

The graph identified by LRR obtains the representation of all

the data under a global low-rank constraint, and thus is better at

capturing the global structures of data, such as multiple clusters

and subspaces. 

Intuitively, nearby points are possibly from the same subspace

and thus the unlabeled nearby points in graph should have similar

labels. Motivated by this, the following quadratic energy function

is suitable to determine the weight between corresponding pairs

of points in the graph: 

∑ 

i, j 

|| [ X ] ∗,i − [ X ] ∗, j || 2 2 [ Z] i, j , (8)

where [ Z ] i, j is the related weight between the i th and j th sam-

ples. Minimizing (8) can assign small weight to the edge between

samples with far distance. On the other hand, nearby points in
he graph might obtain relatively large edge weight. By combin-

ng (8) with the LRR, the proposed Low Rank Representation with

daptive Distance Penalty (LRRADP) method is defined as follows.

in 

Z 
|| Z| | ∗ + λ

n ∑ 

i, j=1 

|| [ X ] ∗,i − [ X ] ∗, j || 2 2 [ Z] i, j , s.t X = X Z, (9)

here Z is the low rank representation matrix of the data set.

> 0 is a balance parameter. By setting an appropriate λ, the LR-

ADP can better capture the global subspace structure of a union

pace and preserve the neighborhood relativity between nearby

oints. In (9) , a s the coefficients can be negative in the data repre-

entation of the LRR, which allows the data can be substracted by

ach other [22] . It lacks physical interpretation for many real ap-

lications [21,23] . To address this issue, we impose the nonnegative

onstraint on the data representation. In addition, we simplify the

ymbols by replacing the element operation by matrix operation

nd the LRRADP can be reformulated as 

in 

Z,E 
|| Z| | ∗ + λtr(�(D � Z)) , s.t X = X Z, Z ≥ 0 . (10)

here D ∈ R n × n is the distance matrix of the X , in which [ D ] i, j =
| [ X] ∗,i − [ X] ∗, j || 2 2 is the distance of two points. � ∈ R n × n is a ma-

rix with all elements are 1. “�” is the Hadamand product. 

In real-world applications, data are often noisy due to measure-

ent or processing issue. In such cases, the data do not perfectly

ie in a union of subspaces. So we need to consider the case where

ata X is a noisy matrix. We introduce an error matrix E to model

he noise, resulting in the following optimization problem: 

in 

Z,E 
|| Z| | ∗ + λ1 || E| | p + λ2 tr(�(D � Z)) , s.t X = X Z + E, Z ≥ 0 . 

(11)

The objective function of the LRRADP has three terms. The first

erm pursues the lowest rank representation of the whole data

pace. The second term characterizes the noises of the data and

hird term ensures that nearby points in Euclidean space can be

ssigned relatively large edge weights. λ1 > 0 and λ2 > 0 are bal-

nce parameters to trade off among the low rankness representa-

ion, errors and adaptive distance penalty. In this paper, l 1 − norm

f E is used to characterize sparse noise of the data. So the LRRADP

as the following model. 

in 

Z,E 
|| Z| | ∗ + λ1 || E| | 1 + λ2 tr(�(D � Z)) , s.t X = X Z + E, Z ≥ 0 . 

(12)

The minimizer Z ∗ of the LRRADP can be considered as an im-

roved low rank representation by embedding the adaptive dis-

ance penalty, a column of which naturally characterizes the affin-

ty of a sample with other samples. Since the adaptive distance

enalty generally guarantees that the representation coefficients

f a sample mainly be formed by the neighboring samples, the

eight graph identified by the optimal solution of the LRRADP can

etter capture both the global clustering structure of the whole

ata and local neighbor relationships among the samples. Note

ere that, since each sample can be represented by itself, the LR-

ADP always exist feasible solutions even when the data sampling

s insufficient. 

.2. Solving the LRRADP 

To solve the LRRADP, we first introduce an auxiliary variable H

o make the variables in the LRRADP separable and then reformu-

ate problem (5) as follows. 

in 

Z,E 
|| Z| | ∗ + λ1 || E| | 1 + λ2 tr(�(D � H)) , 

s.t X = X Z + E, Z = H, H ≥ 0 . 
(13)



L. Fei et al. / Pattern Recognition 67 (2017) 252–262 255 

 

M  

t

L

w  

i  

i

L

 

r  

t  

u

Z

E  

H  

 

 

(  

a

Z

w  

s  

T

Z

w  

v

 

e

E  

w  

t

 

a  

p  

Algorithm 1 

Input : the data set X , parameters: λ1 > 0, λ2 > 0 

Internalize : Z = H = Y 2 = 0 , E = Y 1 = 0 , β0 = 1 , βmax = 10 4 , ηZ = 2 || X| | 2 , 
ξ = 10 −5 , ρ =1.01, k = 0 . 

while || Z k +1 − Z k || / || Z k || ≥ ξ

Update Z as (12) ; 

Update E as (13) ; 

Update H as (14) ; 

Update Y 1 as Y 1 k +1 = Y 1 k + βk ( X k +1 − X k +1 Z k +1 − E k +1 ) ; 

Update Y 2 as Y 2 k +1 = Y 2 k + βk ( Z k +1 − H k +1 ) ; 

Update β as βk +1 = min ( βmax , ρβk ) ; 

Update k : k = k + 1 ; 

end while 

Output: an optimal solution ( Z ∗ , H ∗ , E ∗) 

c
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This problem can be solved by using the Augmented Lagrange

ultiplier (ALM) method [30–32] . The augmented Lagrange func-

ion of problem (13) is 

 (Z, E, H, Y 1 , Y 2 , β) 

= || Z| | ∗ + λ1 || E| | 1 + λ2 tr(�(D � H)) + 〈 Y 1 , X − X Z − E〉 
+ 〈 Y 2 , Z − H〉 + 

β

2 

(|| X − X Z − E|| 2 2 + || Z − H|| 2 2 ) , (14) 

here Y 1 and Y 2 are two Lagrange multipliers, 〈 •, •〉 represents the

nner product, and β > 0 is a penalty parameter. By relaxing the

nner product, (14) can be further converted to as follows. 

 (Z, E, H, Y 1 , Y 2 , β) = || Z| | ∗ + λ1 || E| | 1 + λ2 tr(�(D � H)) 

+ 

β

2 

(|| X − X Z − E + Y 1 /β|| 2 2 + || Z − H + Y 2 /β|| 2 2 ) 

− 1 

2 β
(|| Y 1 || 2 2 + || Y 2 || 2 2 ) . 

(15) 

The problem (15) is unconstrained. So it can be minimized with

espect to Z, E, H , respectively, by fixing the other variables, and

hen updating the Lagrange multipliers Y 1 and Y 2 . Particularly, the

pdate of Z, E and, H in (8) go as follows. 

 k +1 = arg min 

Z 
|| Z| | ∗ + 

β

2 

(
|| X − X Z − E k + 

Y 1 ,k 
β

|| 2 2 + || Z 

− H k + 

Y 2 ,k 
β

|| 2 2 

)
, (16) 

 k +1 = arg min 

E 
|| E| | 1 + 

β

2 

|| X − X Z k − E + Y 1 ,k /β|| 2 2 , (17)

 k +1 = arg min 

H 
λ2 tr(�(D � H)) + 

β

2 

|| Z k − H + Y 2 ,k /β|| 2 2 . (18)

For problem (16) , suppose that q (Z) = 

β
2 (|| X − XZ − E k +

Y 1 ,k 
β

|| 2 2 + || Z − H k + 

Y 2 ,k 
β

|| 2 2 ) . By linearizing the quadratic term in

9) at X k and adding a proximal term, it can be led to the following

pproximation. 

 k +1 = arg min 

Z 
|| Z| | ∗ + q ( Z k ) + 〈 ∇ Z q, Z − Z k 〉 + 

βηz 

2 

(|| Z − Z k || 2 2 ) 

= arg min 

Z 
|| Z| | ∗ + 

βηz 

2 

|| Z − Z k 

+ 

1 

ηz 
(−X 

T (X − X Z − E + Y 1 /β) + (Z − H + Y 2 /β)) || 2 2 , (19) 

here ∇ Z q is the partial differential of q with respect to Z . The

olution of the (12) can be obtained by using the Singular Value

hresholding (SVT) operator [33] : 

 k +1 = � 1 
ηz β

(
Z k + 

1 

ηz 
( X 

T (X − X Z k − E k + Y 1 k /β) 

− ( Z k − H k + Y 2 k /β)) 
)
, (20) 

here � represents the SVT operator and 

1 
ηz β

is the thresholding

alue of the �. 

For problem (17) , it can be directly solved via the shrinkage op-

rator [34] . 

 k +1 = �λ1 
β

(X − X Z + Y 1 /β) , (21)

here � represents the shrinkage operator and 

λ1 
β

is the shrinkage

hreshold of the � . 

For problem (18) , note that the solutions of different samples

re independent, the solution of (18) can be calculated by decom-

osing it into n independent sub-problems, each of which has a
losed form solution. 

 H k +1 ] ∗,i 

= arg min 

[ H] ∗,i 

λ2 [ D ] T ∗,i [ H] ∗,i + 

β

2 

|| [ Z k ] ∗,i − [ H] i, ∗ + [ Y 2 k ] ∗,i /β|| 2 2 

= arg min 

[ H] ∗,i 

|| [ Z k ] ∗,i − [ H] ∗,i + [ Y 2 k ] ∗,i /β − λ2 [ D ] ∗,i /β|| 2 2 

= [ Z k ] ∗,i + [ Y 2 k ] ∗,i /β − λ2 [ D ] ∗,i /β (i = 1 , . . . , n ) . (22) 

The complete algorithm of the LRRADP is outlined in

lgorithm 1 . The algorithm of the LRRADP shares similar conver-

ence propertie as the LADMAP method [29] . Since the ηZ is ini-

ialized as larger than || X || 2 , the LRRADP will convergence to an

xact solution [29] . 

The most computational demand of Algorithm 1 is at step 1,

hich computes the SVD of matrices. It is easy to check that the

omputation cost of step 1 is O ( n 3 + d 3 ) , where n and d are the

ample number and dimension of the dataset. Thus, the above al-

orithm can be solved with a computation complexity of O (ζ ( n 3 +
 

3 )) , where ζ the maximum iteration number of the Algorithm 1 . 

After obtaining optimal representation matrix Z ∗, the weight

atrix/graph of the data set can be built as W = ( Z ∗ + Z ∗T ) / 2 , and

hen the semi-supervised classification method, such as LGC and

FHF, can be employed on the weight matrix to conduct classifica-

ion. In our method, GFHF is used as the label prediction method

hich has the following optimization form: 

(F ) = 

1 

2 

n ∑ 

i, j= n 
|| [ F ] i, ∗ − [ F ] j, ∗| | 2 [ W ] i, j + λ∞ 

m ∑ 

i =1 

|| [ F ] i, ∗, − [ Y ] i, ∗, | | 2 

= tr( F T L W 

F ) + tr (F − Y ) T U(F − Y ) , (23) 

here F ∈ R n × c and Y ∈ R n × c are the label prediction matrix and

abeled matrix, respectively. L W 

= D − W is the Laplacian matrix of

 , in which D is a diagonal matrix with D ii = 

∑ n 
j=1 [ W ] i, j . λ∞ 

is a

arge enough parameter. U is a diagonal matrix with diagonal el-

ments are λ∞ 

and 0 corresponding to the labeled and unlabeled

lements, respectively. By setting the derivative of g with respect

o F to zero, the label prediction matrix can be directly obtained

s follows. 

 = ( L W 

+ U) −1 UY. (24) 

Finally, the label of each unknown sample can then be identi-

ed as: 

abel(k ) = arg max 
j 

F k, j . (25) 

. LRRADP 

2 

In general, the quality of data representation will greatly affect

he quality of graph. A good data representation could improve the

uality of the graph and then improve the performance of the SSL.
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Algorithm 2 

Input : the data set X , parameters: λ1 > 0, λ2 > 0 

Internalize : Z = H = E = Y 1 = Y 2 = 0 , P 0 is initialized by PCA, β0 = 1 , βmax = 10 4 , 

ηZ = 2 || X| | 2 , ξ = 10 −5 , ρ = 1 . 01 , k = 0 . 

while || Z k +1 − Z k || / || Z k || ≥ ξ

Update P as: 

if k == 0 P = P 0 ; 

else update P according to (28) ; 

Update Z as (30) ; 

Update E as (31) ; 

Update H as (32) ; 

Update Y 1 as Y 1 k +1 = Y 1 k + βk ( X k +1 − X k +1 Z k +1 − E k +1 ) ; 

Update Y 2 as Y 2 k +1 = Y 2 k + βk ( Z k +1 − H k +1 ) ; 

Update β as βk +1 = min ( βmax , ρβk ) ; 

Update k : k = k + 1 ; 

end while 

Output : an optimal solution ( Z ∗ , H ∗ , E ∗ , P ∗) 

Fig. 1. Some typical examples of different datasets. The first to fifth rows show the 

some typical images of the COIL20, Extended YaleB, AR, MNIST and C-Cube datasets, 

respectively. 
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Previous works [22] have shown that by projecting the data with

a projection matrix, the embedded data will facilitate the subse-

quent data representation and increase the classification accuracy.

To improve the data representation, we propose to learn an ap-

propriate subspace in which the graph identified by the LRRADP

is more robust to the variance of data. The adaptive distances be-

tween corresponding samples are also calculated in the subspace.

We first denote an projection matrix as P . By plugging the learning

of P into the LRRADP graph construction framework, we arrive at

the following formulation: 

min 

Z,P,E 
|| Z | | ∗ + λ1 || E| | 1 + λ2 

n ∑ 

i, j=1 

|| [ P T X ] ∗,i − [ P T X ] ∗, j || 2 2 [ Z ] i, j , 

s.t P T X = P T X Z + E, Z ≥ 0 , P T P = I. (26)

To avoid the trivial solution, the project matrix P is restricted to

column orthogonal. For simplification, we term the problem (26) as

LRRADP Projected version (referred to as LRRADP 2 ). It is easy to

check that the LRRADP is a special case of LRRADP 2 with P = I. By

defining an appropriate linear subspace structure of the data, it is

expected to explore a more powerful discriminative graph to per-

form the semi-supervised classification. Moreover, by suitably as-

signing the dimension of P , some noise, such as outliers and ran-

dom corruptions, could be filtered out. Thus, it is believed that

the graph identified by the LRRADP 2 should be more discrimina-

tive than that identified by the LRRADP method. 

To solve the problem (26) , we also introduce an auxiliary vari-

able and relax the constraints in (26) to obtain the following aug-

mented Lagrange function: 

|| Z| | ∗ + λ1 || E| | 1 + λ2 tr(�(D � H)) 

+ 〈 Y 1 , P T X − P T X Z − E〉 + 〈 Y 2 , Z − H〉 
+ 〈 Y 3 , P T P − I〉 + 

β

2 

(|| P T X − P T X Z − E|| 2 2 + || Z − H|| 2 2 

+ || P T P − I|| 2 2 ) , (27)

where Y 1 , Y 2 and Y 3 are Lagrange multipliers, and β > 0 is a

penalty parameter. Following the commonly used strategy in ADM,

we alternatively update the unknown variables. Specifically, we

first optimize the objective function of the LRRADP 2 with respect

to P by fixing Z, E , and H , then we update Z, E , and H while fixing

P . 

When Z, E and H are fixed, (27) degrade to: 

min 

P 
λ2 tr( P T X L H X 

T P ) + tr(Y T 1 ( P 
T X − P T X Z −E)) + tr(Y T 3 ( P 

T P −I)) , 

(28)

where L H = D H − ( H 

T + H) / 2 is the Laplacian matrix of the H , the

D H is defined as the diagonal matrix where i th diagonal element

[ D H ] i,i = 

∑ 

j ( [ H] i, j + [ H] j,i ) / 2 , (i = 1 , 2 , . . . , n ) . The projection ma-

trix P can be directly solved by setting the partial differential of

(28) with respect to P to zero. 

When P is fixed, the problem of (26) can be converted to 

min 

Z,E 
|| Z| | ∗ + λ1 || E| | 1 + λ2 

n ∑ 

i, j=1 

|| [ X 

′ ] ∗,i − [ X 

′ ] ∗, j || 2 2 [ H] i, j , 

s.t X 

′ = X 

′ Z + E, Z = H, H ≥ 0 , (29)

where X ′ = P T X . It can be seen that the problem of (29) has a sim-

ilar objective function as the LRRADP. Thus, the Z, E and H can be

solved iteratively by fixing other variables, arriving at following it-

erations: 

Z k +1 = � 1 
ηz β

(
Z k + 

1 

ηz 
( ( P T X ) T ( P T X − P T X Z k − E k + Y 1 k /β) 

− ( Z k − H k + Y 2 k /β)) 
)
, (30)
 k +1 = �λ1 
β

( P T X − P T X Z + Y 1 /β) , (31)

 H k +1 ] ∗,i = [ Z k ] ∗,i + [ Y 2 k ] ∗,i /β − λ2 [ D 

′ ] ∗,i /β, (i = 1 , . . . , n ) , (32)

here [ D 

′ ] i, j = || [ P T X] ∗,i − [ P T X] ∗, j || 2 2 . We alternatively solve prob-

em (21) , (23) , (24) and (25) until convergence. The complete pro-

ess of the optimization of LRRADP 2 is summarized in Algorithm 2 .

fter getting the optimal solution Z ∗, we use the similar scheme as

hat of LRRADP to construct a weight graph and then predict the

abels of unlabeled samples by using the GFHF. 

. Experiments 

In this section, we evaluate the performance of the proposed

ethods on baseline databases, as well as other state-of-the-art

raph construction methods. We combine the graphs identified by

he LRRADP, LRRADP 2 and conventional popular graph construction

ethods with the GFHF method to perform the semi-supervised

lassification, and quantitatively evaluate their performance. We

est and compare these solvers on six representative data sets,

ncluding the COIL20, AR, Extended Yale B, Isolet5, MNIST and

-Cube datasets. Among them, the COIL20 is an object dataset. The

R and Extended Yale B datasets are two face datasets and the Iso-

et5 is a voice dataset. The MNIST and C-Cube are two real word

andwritten datasets of digits and characters, respectively. In the

est dataset, Fig 1 shows some typical images selected from these

atasets. In order to test the robustness of the proposed methods,

e form several corrupted/noisy datasets by adding block corrup-

ions and random noises of different levels on the COIL20 and Ex-

end Yale B datasets. On each dataset, four representative affinity

raphs are constructed as baselines by using the LRR [13] , LatLRR
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Table 1 

The accuracy (%) of classification obtained using different methods on the COIL20 dataset. 

#Tr LRR LatLRR SSC Robust LatLRR LRRADP LRRADP 2 

1 50 .68 ± 5.36 43 .54 ± 2.29 59 .61 ± 6.85 28 .40 ± 7.91 74 .93 ± 1.79 72 .42 ± 3.93 

2 67 .29 ± 3.30 61 .81 ± 2.76 68 .26 ± 9.15 37 .24 ± 2.35 85 .35 ± 0.93 82 .99 ± 3.56 

3 73 .16 ± 2.86 71 .94 ± 2.88 78 .70 ± 4.86 70 .12 ± 2.73 87 .01 ± 1.17 87 .13 ± 1.81 

4 76 .25 ± 2.89 74 .41 ± 1.29 84 .59 ± 3.76 75 .47 ± 2.47 89 .26 ± 1.27 89 .33 ± 1.53 

5 77 .57 ± 2.09 79 .53 ± 1.79 87 .87 ± 2.07 78 .25 ± 1.75 90 .10 ± 0.95 90 .34 ± 1.35 

6 79 .22 ± 1.53 80 .92 ± 1.56 88 .08 ± 6.34 80 .91 ± 2.02 91 .42 ± 0.97 91 .80 ± 0.80 

7 82 .45 ± 2.10 83 .43 ± 1.63 92 .00 ± 3.02 82 .65 ± 1.92 91 .72 ± 0.98 92 .09 ± 0.87 

Fig. 2. Convergence curves of LRRADP. (a) and (b) are convergence curves of the LRRADP and LRRADP 2 , respectively. 
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17] , Sparse Subspace Clustering (SSC) [35,36] , and Robust LatLRR

18] methods. All algorithms first construct an affinity matrix by

espective corresponding technique and then GFHF propagates the

lass labels from labeled samples to unlabeled samples based on

he constructed affinity matrix/graph. In the classification proce-

ure, we randomly select different numbers of samples per subject

s labeled samples and use the remaining as unlabeled samples.

ll algorithms are run 10 times and then the mean classification

esults and standard deviation are reported and compared. 

All algorithms are run on MATLAB 8.2.0 on a PC with double-

ore Intel(R) i5-3470 CPU at 3.2 GHz, RAM 8.00GB and Windows

.0 operating system. It should be pointed out that the parame-

ers of all these methods are carefully adjusted to obtain the best

lassification results. To improve the computation efficiency of the

RRADP, the feature dimensions of the data are reduced by using

CA to preserve 98% energy of the data. 

.1. Experiments on the COIL20 dataset 

The COIL20 dataset ( http://www.cs.columbia.edu/CAVE/ 

oftware/softlib/coil-20.php ) contains 1440 images of 20 ob-

ects and each object provides 72 images, which were captured

rom varying angles at pose intervals of five degree. The original

mages were normalized to 128 × 128 pixels and they are resized

o a gray-scale image of 32 × 32 pixels for computational efficiency

n our experiments, and then converted a 1024 dimensional scale-

evel feature for each image. Twelve examples selected from the

OIL20 dataset are shown as in row 1 of Fig. 1 . In this experiment,

 to 7 images per subject are randomly selected as labeled samples

nd the rest are used as unlabeled samples, respectively. In each

ase, the mean classification accuracy and corresponding standard

eviations are listed as in Table 1 , where #Tr denotes the number

f labeled samples of a subject. It can be seen that the proposed

ethods, including the LRRADP and LRRADP 2 , outperforms other

ethods. Fig. 2 shows the convergence curves of the LRRADP and
RRADP 2 algorithms, respectively. We can see that both of LRRADP

nd LRRADP 2 have fast convergence speed. 

.2. Experiments on the Extended Yale B dataset 

The Extended Yale B dataset ( http://www.cad.zju.edu.cn/home/

engcai/Data/FaceData.html ) consists of 2432 human frontal face

mages of 38 subjects. Each subject contains about 64 images taken

nder different illuminations. A number of images in Extended

ale B dataset are seriously affected by shadows or reflection. The

ow 2 of Fig. 1 show some images of the same person from the

xtended Yale B dataset. In the experiments, images selected from

andomly 30 subject forms the test dataset, in which 1 to 7 images

er subject are randomly selected as labeled samples and the re-

aining images are used as unlabeled samples. The classification

esults are elaborated as in Table 2 , from which we can see that

he LRRADP performs the best among all methods. 

.3. Experiments on the AR dataset 

AR face dataset [37] is public available at http://www2.ece.

hio-state.edu/ ∼aleix/ARdatabase.html . It contains over 40 0 0 im-

ges corresponding to 126 persons (70 men and 56 women). These

mages were captured under different facial expressions, illumi-

ations and occlusions, such as sunglasses and scarf. The images

ere taken under strictly controlled conditions. Each person par-

icipated in two sessions, separated by about two weeks. The same

ictures were taken in both sessions. Some images of the same

erson from the AR face dataset are shown as in row 1 of Fig. 1 . In

ur experiments, we generate a sub-dataset by using the images

rom first 30 subjects, each of which contains 26 images. Thus,

here are 780 images in total are used in the sub-dataset. Among

hese images, 1 to 7 images per each subject are randomly labeled

nd the remaining images are used as testing samples. Table 3

ummarizes the classification results obtained by using different

ethods. From the table we can see that, in most cases, the LR-

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
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Table 2 

The accuracy (%) of classification obtained using different methods on the Extended Yale B dataset. 

#Tr LRR LatLRR SSC Robust LatLRR LRRADP LRRADP 2 

1 38 .28 ± 4.97 36 .76 ± 2.93 47 .48 ± 2.03 31 .18 ± 8.03 58 .00 ± 1.93 49 .77 ± 3.28 

2 44 .61 ± 3.05 53 .74 ± 1.55 64 .18 ± 2.46 48 .71 ± 6.89 71 .31 ± 2.77 64 .37 ± 1.29 

3 57 .62 ± 2.45 63 .06 ± 2.81 72 .16 ± 2.81 59 .74 ± 5.35 76 .80 ± 2.87 72 .21 ± 0.97 

4 65 .22 ± 2.01 69 .18 ± 2.46 76 .30 ± 2.22 69 .28 ± 2.59 80 .86 ± 1.62 77 .58 ± 1.73 

5 70 .22 ± 2.93 74 .05 ± 2.13 79 .88 ± 1.95 75 .45 ± 2.97 83 .11 ± 1.80 79 .87 ± 1.39 

6 72 .61 ± 5.52 77 .79 ± 2.12 82 .27 ± 1.54 80 .47 ± 1.65 83 .72 ± 1.34 81 .71 ± 1.24 

7 76 .13 ± 6.14 81 .69 ± 1.82 84 .14 ± 1.72 84 .01 ± 1.28 85 .19 ± 1.60 83 .36 ± 0.74 

Table 3 

The accuracy (%) of classification obtained using different methods on the AR dataset. 

#Tr LRR LatLRR SSC Robust LatLRR LRRADP LRRADP 2 

1 40 .53 ± 3.94 56 .53 ± 3.65 50 .29 ± 6.54 63 .63 ± 2.15 66 .57 ± 3.95 60 .89 ± 3.25 

2 68 .78 ± 3.85 78 .87 ± 2.62 71 .22 ± 3.77 80 .64 ± 1.24 81 .32 ± 3.43 77 .43 ± 3.16 

3 82 .57 ± 1.41 86 .23 ± 1.88 80 .12 ± 1.81 87 .57 ± 0.98 89 .42 ± 1.83 83 .51 ± 1.55 

4 87 .27 ± 1.28 90 .41 ± 1.34 86 .29 ± 2.77 90 .33 ± 1.26 91 .79 ± 1.60 90 .26 ± 0.94 

5 91 .11 ± 1.55 93 .14 ± 1.51 88 .70 ± 2.19 93 .54 ± 0.80 95 .41 ± 0.87 92 .10 ± 1.71 

6 92 .13 ± 0.82 94 .58 ± 1.08 91 .45 ± 2.52 94 .48 ± 0.98 95 .33 ± 1.13 93 .15 ± 1.15 

7 94 .11 ± 1.03 95 .79 ± 0.65 94 .05 ± 0.97 95 .05 ± 1.48 96 .37 ± 1.24 95 .18 ± 1.36 

Table 4 

The accuracy (%) of classification obtained using different methods on the Isolet5 dataset. 

#Tr LRR LatLRR SSC Robust LatLRR LRRADP LRRADP 2 

1 11 .60 ± 8.98 35 .73 ± 2.72 19 .98 ± 9.09 30 .51 ± 4.01 45 .15 ± 2.71 44 .24 ± 1.91 

2 30 .08 ± 9.62 53 .33 ± 2.10 45 .02 ± 5.48 47 .54 ± 2.80 58 .28 ± 1.57 57 .20 ± 1.75 

3 45 .44 ± 9.82 61 .26 ± 3.40 56 .06 ± 2.79 57 .20 ± 1.51 64 .64 ± 2.47 65 .01 ± 2.51 

4 65 .24 ± 3.11 67 .88 ± 1.25 63 .40 ± 1.55 61 .05 ± 1.65 68 .29 ± 2.08 69 .22 ± 1.61 

5 70 .35 ± 2.24 71 .27 ± 1.22 66 .17 ± 1.25 64 .26 ± 1.38 72 .31 ± 0.94 72 .46 ± 2.36 

6 74 .21 ± 1.49 74 .06 ± 1.65 67 .78 ± 1.63 67 .65 ± 1.13 74 .16 ± 1.80 74 .77 ± 1.08 

7 76 .60 ± 1.83 75 .86 ± 2.18 70 .60 ± 1.31 69 .97 ± 1.32 75 .77 ± 1.79 77 .25 ± 1.63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d  

s  

d  

b  

W  

t

5

 

t  

i  

r  

I  

a  

A  

T  

t  

g  

o  

3  

c  

a  

Fig. 3. Some normalized bitmaps of the C-Cube dataset. 
RADP can achieve higher classification accurate rates than other

graph construction methods. 

5.4. Experiments on Isolet5 dataset 

The Isolet5 dataset is available online at https://archive.ics.uci.

edu/ml/datasets/ISOLET . In the generation of the Isolet5 dataset,

150 subjects spoke the name of each letter of the alphabet twice.

Hence, 52 training examples from each speaker are obtained. The

speakers are grouped into sets of 30 speakers each, and are re-

ferred to as Isolet1, Isolet2, Isolet3, Isolet4, and Isolet5. The data

appears in Isolet 1 + 2 + 3 + 4 data in sequential order and the Iso-

let5 is a separate file. In this experiments, the Isolet5 dataset is

used, which consists of 26 alphabet voice data from 30 subjects,

each of which provide twice voice. In other word, the Isolet5 con-

tains 26 classes of voice data, each of which has about 60 samples.

Specially, we note that the data of “m” is missing and it has 59

samples. Each data in Isolet5 dataset is normalized to a serial of

617 pixels. Table 4 lists the results of the classification by using

different methods. From the table we can see that the proposed

methods (LRRADP and LRRADP 2 ) can achieve higher classification

accuracy than other benchmark methods. Moreover, the LRRADP 2 

performs better than the LRRADP. 

5.5. Experiments on MNIST dataset 

The MNIST dataset ( http://www.cad.zju.edu.cn/home/dengcai/

Data/MLData.html ) consists of more than seventy thousand hand-

written images of 10 digits with sizes of 28 × 28 pixels. The forth

row of Fig. 1 shows some typical images of the MNIST dataset.

In the experiments, we use the first 40 0 0 images of the MNIST
ataset to form the test dataset, in which each digit has about 400

amples. We randomly select 30, 50, 80, 100, 150, 200 samples per

igit as labeled samples and use the remaining images as unla-

eled samples. The experimental results are detailed in Table 5 .

e can see from the table that the proposed LRRADP 2 performs

he best. 

.6. Experiments on C-Cube dataset 

The C-Cube dataset ( http://ccc.idiap.ch ) contains more than fifty

housand cursive characters extracted from cursive words, includ-

ng both the upper and lower case of 26 letters [38,39] . The fifth

ow of Fig. 1 presents some typical examples of the C-Cube dataset.

n the experiments, we randomly select 20 0 0 characters of ‘A-J’

nd ‘a-j’, each of which has 100 samples, to form the test dataset.

ll characters are in the center of the bitmaps with different sizes.

o facilitate the experiments, we first reset the size of each bitmap

o make it with the same length and width by filling “black” back-

round, and keep the character in the center of the bitmap with-

ut changing the character’s size. Then, we resize the bitmap into

0 × 30 pixels. Fig. 3 shows some normalized bitmaps. In classifi-

ation experiments, 20, 30, 40, 50, 60 and 70 images per character

re randomly selected as labeled samples and the remaining sam-

https://archive.ics.uci.edu/ml/datasets/ISOLET
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://ccc.idiap.ch
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Table 5 

The accuracy (%) of classification obtained using different methods on the MNIST dataset. 

#Tr LRR LatLRR SSC Robust LatLRR LRRADP LRRADP 2 

20 31 .30 ± 1.15 62 .75 ± 0.82 72 .05 ± 1.43 34 .90 ± 3.73 70 .33 ± 1.41 74 .71 ± 0.72 

50 47 .12 ± 7.01 71 .41 ± 1.01 81 .18 ± 0.87 40 .05 ± 7.40 77 .52 ± 0.84 83 .09 ± 0.57 

80 66 .83 ± 3.98 74 .56 ± 0.54 84 .19 ± 0.60 55 .08 ± 12.36 81 .87 ± 0.63 86 .12 ± 0.59 

100 74 .56 ± 0.52 75 .41 ± 0.75 85 .18 ± 0.45 66 .27 ± 12.94 82 .92 ± 0.66 87 .45 ± 0.49 

150 77 .97 ± 0.82 77 .96 ± 0.61 87 .01 ± 0.43 78 .64 ± 0.89 85 .12 ± 0.46 89 .46 ± 0.44 

200 79 .60 ± 0.81 79 .51 ± 0.75 87 .76 ± 0.52 81 .03 ± 0.67 86 .36 ± 0.42 90 .32 ± 0.62 

Table 6 

The accuracy (%) of classification obtained using different methods on the C-Cube dataset. 

#Tr LRR LatLRR SSC Robust LatLRR LRRADP LRRADP 2 

20 34 .26 ± 9.26 42 .01 ± 1.37 28 .29 ± 2.47 27 .21 ± 1.85 35 .02 ± 2.14 42 .71 ± 1.23 

30 43 .10 ± 0.85 45 .86 ± 1.92 33 .06 ± 2.81 30 .89 ± 3.29 44 .33 ± 1.53 49 .23 ± 1.46 

40 45 .89 ± 0.84 48 .57 ± 1.03 40 .63 ± 5.09 33 .72 ± 3.92 46 .74 ± 1.36 54 .11 ± 1.78 

50 47 .17 ± 1.70 49 .93 ± 1.64 46 .88 ± 6.49 35 .65 ± 6.80 49 .11 ± 1.23 56 .79 ± 1.37 

60 49 .26 ± 1.35 50 .65 ± 1.14 48 .66 ± 5.40 42 .13 ± 13.43 51 .20 ± 1.38 59 .49 ± 1.52 

70 49 .25 ± 1.62 51 .37 ± 1.01 55 .57 ± 7.79 45 .63 ± 8.49 51 .64 ± 1.42 60 .80 ± 1.65 
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Fig. 4. Some examples of the corrupted/noisy images. The first and second rows are 

block corrupted images with size of 10 × 10 and 20 × 20 occlusions added on the 

original images of the Extended Yale B dataset, respectively; the third and fourth 

rows are noisy images with 10% and 20% “salt & pepper” noises added on the orig- 

inal images of the Extended Yale B dataset, respectively. 
les are used as unlabeled samples, respectively. The classification

esults are summarized in Table 6 , from which we see that the

RRADP 2 achieve higher accuracy than the other methods. 

.7. Experiments on corrupted and noisy datasets 

In order to evaluate the robustness of the proposed meth-

ds, we simulate contiguous occlusions and random pixel corrup-

ions on various levels respectively. We select the first 15 persons

rom the Extended Yale B face dataset and generate four synthetic

atasets by adding different levels of occlusions or noises, which

re formed as follows. For the contiguous occlusions, the block oc-

lusions are randomly added to different locations in original im-

ges of Extended Yale B dataset and the block sizes are 10 × 10 and

0 × 20, respectively. For the noisy synthetic datasets, we randomly

dd 10% and 20% “salt & pepper” noises on the original samples of

he Extended Yale B dataset, respectively. Fig. 4 shows some ex-

mples from these four synthetic datasets. We test and compare
Table 7 

The accuracy (%) of classification on the extended YaleB database

20 × 20, and with 10% and 20% “salt & pepper” noises, respective

#Tr LRR LatLRR SSC 

5 50 .68 ± 1.98 49 .82 ± 1.16 48 .00 ±
10 59 .00 ± 2.17 59 .42 ± 1.30 56 .40 ±

Corruptions 15 65 .77 ± 2.12 65 .14 ± 2.02 60 .50 ±
(10 × 10) 20 68 .80 ± 2.37 68 .98 ± 1.35 65 .01 ±

25 70 .22 ± 1.70 71 .94 ± 1.45 68 .07 ±
30 74 .60 ± 1.53 73 .07 ± 1.57 71 .03 ±
5 22 .91 ± 4.00 30 .79 ± 1.84 32 .83 ±
10 31 .09 ± 7.69 38 .75 ± 1.69 37 .81 ±

Corruptions 15 37 .96 ± 9.86 44 .76 ± 1.35 42 .35 ±
(20 × 20) 20 43 .93 ± 7.11 58 .05 ± 1.57 54 .17 ±

25 51 .93 ± 11.29 61 .20 ± 1.41 61 .36 ±
30 51 .71 ± 11.56 62 .32 ± 1.56 63 .52 ±
5 46 .58 ± 2.03 47 .19 ± 2.03 50 .82 ±
10 48 .50 ± 1.48 52 .89 ± 1.85 55 .33 ±

Noises 15 55 .78 ± 1.57 59 .03 ± 2.08 63 .32 ±
(10%) 20 56 .44 ± 1.65 60 .53 ± 1.98 65 .70 ±

25 56 .17 ± 1.53 61 .78 ± 1.34 66 .82 ±
30 56 .83 ± 1.64 72 .21 ± 2.15 67 .72 ±
5 23 .16 ± 1.20 25 .36 ± 1.87 24 .45 ±
10 30 .22 ± 1.55 34 .10 ± 2.06 32 .29 ±

Noises 15 36 .03 ± 1.05 41 .89 ± 1.33 40 .05 ±
(20%) 20 40 .47 ± 0.80 46 .42 ± 1.83 47 .09 ±

25 40 .76 ± 1.28 48 .51 ± 1.41 46 .19 ±
30 41 .60 ± 1.78 48 .31 ± 1.29 47 .93 ±
he performance of different algorithms on these corrupted/noisy

ynthetic datasets. In each data set, different number of images
 with randomly block corruptions with size of 10 × 10 and 

ly. 

Robust LatLRR LRRADP LRRADP 2 

1.85 52 .56 ± 1.49 59 .45 ± 2.62 60 .56 ± 3.78 

1.23 61 .97 ± 1.22 73 .30 ± 2.60 75 .23 ± 1.78 

1.84 69 .41 ± 2.22 79 .67 ± 1.61 82 .52 ± 1.96 

1.31 73 .52 ± 1.92 84 .15 ± 1.49 86 .68 ± 0.83 

0.92 68 .40 ± 1.90 85 .18 ± 2.30 88 .37 ± 1.06 

2.30 79 .13 ± 2.00 88 .02 ± 1.21 91 .66 ± 1.68 

2.65 31 .00 ± 2.46 35 .30 ± 2.01 44 .38 ± 2.52 

2.82 38 .85 ± 2.40 48 .35 ± 2.54 60 .67 ± 1.92 

2.31 44 .55 ± 1.88 58 .66 ± 1.78 72 .10 ± 1.75 

1.54 58 .77 ± 1.66 64 .38 ± 1.64 78 .01 ± 1.38 

1.63 66 .62 ± 2.65 68 .80 ± 1.08 83 .59 ± 1.33 

2.98 70 .32 ± 2.27 72 .41 ± 2.18 87 .04 ± 2.20 

1.73 50 .63 ± 3.91 57 .25 ± 3.50 56 .63 ± 3.61 

2.08 59 .45 ± 2.10 70 .65 ± 1.92 72 .39 ± 2.19 

1.26 69 .08 ± 1.31 76 .13 ± 1.00 78 .76 ± 2.05 

1.07 72 .78 ± 2.32 79 .94 ± 1.62 80 .81 ± 0.87 

1.05 74 .48 ± 2.00 82 .72 ± 1.40 84 .25 ± 1.39 

1.56 75 .80 ± 2.01 84 .53 ± 1.10 85 .63 ± 0.85 

1.48 28 .34 ± 5.55 30 .87 ± 2.67 38 .30 ± 4.94 

0.80 41 .74 ± 5.13 45 .50 ± 2.10 51 .65 ± 2.47 

1.08 50 .62 ± 1.31 54 .44 ± 1.77 59 .40 ± 1.51 

1.00 51 .89 ± 1.52 60 .40 ± 1.27 64 .81 ± 1.65 

1.20 57 .12 ± 1.38 62 .36 ± 1.40 67 .70 ± 1.30 

1.46 58 .80 ± 1.50 65 .71 ± 2.40 69 .45 ± 1.37 
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Table 8 

The accuracy (%) of classification on the COIL20 database with randomly block corruptions with size of 10 × 10, and with 

15% “salt & pepper” noises, respectively. 

#Tr LRR LatLRR SSC Robust LatLRR LRRADP LRRADP 2 

5 41 .63 ± 2.10 55 .82 ± 1.57 50 .44 ± 3.20 43 .05 ± 1.63 59 .40 ± 1.30 61 .29 ± 1.74 

10 58 .88 ± 1.37 68 .70 ± 1.87 61 .14 ± 6.56 56 .80 ± 1.38 71 .95 ± 1.85 74 .79 ± 1.58 

Corruptions 15 64 .66 ± 1.59 73 .25 ± 1.18 68 .96 ± 8.07 65 .11 ± 1.06 77 .07 ± 0.96 80 .16 ± 1.01 

(15 × 15) 20 67 .06 ± 1.36 76 .09 ± 1.45 77 .24 ± 4.04 69 .84 ± 0.96 81 .81 ± 2.30 83 .72 ± 1.16 

25 69 .21 ± 2.17 78 .24 ± 1.13 81 .54 ± 2.14 74 .05 ± 1.23 83 .98 ± 0.96 85 .17 ± 1.31 

30 70 .26 ± 1.28 79 .46 ± 1.49 84 .20 ± 1.00 76 .49 ± 1.89 85 .93 ± 1.36 87 .05 ± 0.91 

5 69 .10 ± 3.10 71 .66 ± 1.87 68 .35 ± 2.63 78 .81 ± 1.74 77 .96 ± 1.60 80 .20 ± 2.00 

10 77 .52 ± 1.92 80 .78 ± 2.12 78 .66 ± 1.85 83 .52 ± 1.28 84 .74 ± 1.42 85 .32 ± 1.13 

Noises 15 80 .69 ± 2.25 82 .97 ± 1.36 81 .43 ± 2.01 86 .99 ± 1.14 87 .34 ± 1.13 87 .44 ± 1.38 

(15%) 20 81 .71 ± 1.54 86 .19 ± 1.60 83 .74 ± 0.97 87 .97 ± 0.83 89 .88 ± 1.61 88 .38 ± 1.13 

25 84 .43 ± 1.13 86 .76 ± 1.14 85 .01 ± 2.03 89 .07 ± 0.89 91 .11 ± 0.81 89 .26 ± 1.41 

30 84 .71 ± 0.83 87 .45 ± 1.63 85 .94 ± 1.12 89 .96 ± 0.66 92 .33 ± 0.98 89 .56 ± 0.89 

Fig. 5. Some examples of the corrupted/noisy images. The first row is block cor- 

rupted images with size of 15 × 15 occlusions added on the original images of the 

COIL20 dataset; the second row is noisy images with 15% “salt & pepper” noises 

added on the original images of the COIL20 dataset. 
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per person are randomly selected as labeled samples and the

remaining images are used as unlabeled samples. The results on

four types of synthetic datasets are shown as in Table 7 . It is

easy to see that the proposed methods consistently performs bet-

ter than other methods on all four datasets. 

Furthermore, we formed two datasets, including a corrupted

dataset and a noisy dataset, by randomly adding the block occlu-

sion with size of 15 × 15 and 15% “salt & pepper” noises on the

COIL 20 dataset, respectively. Fig. 5 shows some examples from

these two synthetic datasets. We evaluate the performances of the

proposed methods as well as other algorithms on these corrupted

and noisy datasets, in each of which different number of images

per class are randomly selected as labeled samples and the rest

images form the test set. The classification results on two syn-

thetic datasets are summarized in Table 8 , from which we can see

that the LRRADP and LRRADP 2 methods consistently achieve higher

classification accuracy than other methods on both COIL20 based

synthetic datasets. 

5.8. Experimental results analysis 

Based on the evaluation results shown in the above tables,

we have following findings. At first, experimental results on all

datasets show that the LRRADP based methods, including the LR-

RADP and LRRADP 2 methods, can achieve higher classification ac-

curacy than other methods in most conditions. It demonstrates

that the LRRADP based methods can construct a discriminative

affinity graph for the whole data. By using semi-supervised clas-

sification method, such as GFHF, the label information can be cor-

rectly propagated from the labeled to unlabeled samples over the

graph. 

Second, it is noticed that the LRRADP based methods can signif-

icantly increase the classification accuracy than other graph con-

struction methods when there are only few labeled samples. For

example, when only one sample per each subject is used as la-

beled sample, accuracies of the LRRADP based methods be 10%

higher than that of the best among other methods for the COIL

20, Extended Yale B and Isolet5 datasets. The main reason is that
he LRRADP effectively preserves the neighbor relationship among

earby samples, which is quite important for the semi-supervised

abel prediction. Therefore, the proposed methods are suitable to

o the semi-supervised classification when only limited amount of

amples are labeled. 

Third, in general, as an improved LRRADP, the LRRADP 2 per-

orms similarly with or better than the LRRADP method, which

an be seen in the experimental results on the COIL20 and Isolet5

atasets. However, it is noticed that the LRRADP outperforms the

RRADP 2 for two face datasets. The possible reason is that most of

mages in these two face datasets have greater variations. For ex-

mple, most of images in the Extended YaleB dataset are heavily

hadowed and the images in the AR dataset were captured under

ifferent facial expressions and sunglasses or scarf occlusions, all

f which lead to these images cannot be well projected into an ap-

ropriate subspaces. In other words, the LRRADP 2 possibly project

hese images into an unsuitable subspace resulting the drop of the

ccurate rate. 

Forth, from the experimental results on the corrupted/noisy

atasets, it is not hard to see that the proposed methods can

ignificantly increase the classification accuracy on the block cor-

upted and random noisy datasets in most conditions. In other

ords, the adaptive distance penalty embedded in the LRR can

ffectively improve the robustness to the corruption and noise.

oreover, we can see that the LRRADP 2 performs much better than

he LRRADP on both the real world handwritten digit/character and

orrupted/noisy datasets. This is because that the Euclidean dis-

ance and linear combination in the LRRADP can be suitable ad-

usted to an appropriate representation. By appropriately assign-

ng the projection matrix and then projecting the data set into the

ubspace, the LRRADP 2 is able to filter out some outlier and noise

nfluence so as to construct a more discriminative affinity graph. 

In summary, the LRRADP is suitable for the classification of

hose data with few noises and the LRRADP 2 is suitable for the

eal world handwritten and corrupted/noisy data. 

. Conclusions 

In this paper, we considered the general problem of learning

rom labeled and unlabeled samples and classifying the unlabeled

amples and proposed a novel low rank representation with adap-

ive distance penalty, named LRRADP, to learn the affinity graph

f the data set. By embedding the adaptive distance penalty into

he LRR, the obtained affinity graph can better not only capture

he global clustering structure of the whole data but also preserve

he local neighbor relationship of those data. Based on the affin-

ty graph, the semi-supervised label propagation method, such as

FHF, can effectively propagate labels from the labeled samples to

nlabeled samples. By projecting the data set into an appropri-
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te subspace, the LRRADP can be further improved to discover a

ore discriminative affinity graph. The improved LRRADP, named

s LRRADP 2 , shows competitive performance on the real world

andwritten, block occlusions and random noises datasets. Exper-

mental results on multiple datasets demonstrate the effectiveness

f the proposed methods. Furthermore, the proposed methods are

ery effective and suitable for the semi-supervised classification

hen the labeled samples are relative limited. 
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